Saracatinib(AZD0530)处理以剂量依赖性方式有效抑制皮下移植的Src3T3成纤维细胞在小鼠和大鼠中的增殖。在两种模型中,在≥6mg/ kg /天的剂量下观察到肿瘤生长的显著抑制(小鼠中60%抑制和大鼠中用载体处理的动物中98%抑制),并且在所研究的最大剂量下,完全抑制肿瘤生长。观察到(小鼠25mg/kg /天100%抑制,大鼠10mg/kg /天)[1]。
[1]. Green TP, et al. Preclinical anticancer activity of the potent, oral Src inhibitor AZD0530. Mol Oncol, 2009, 3(3), 248-261. [2]. Fuse MA, et al. Combination Therapy With c-Met and Src Inhibitors Induces Caspase-Dependent Apoptosis of Merlin-Deficient Schwann Cells and Suppresses Growth of Schwannoma Cells. Mol Cancer Ther. Mol Cancer Ther. 2017 Nov;16(11):2387-2398.
[1]. Li D, et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008 Aug 7;27(34):4702-11. [2]. Wong CH, et al. Preclinical evaluation of afatinib (BIBW2992) in esophageal squamous cell carcinoma (ESCC). Am J Cancer Res. 2015 Nov 15;5(12):3588-99
小鼠和大鼠[2]给予具有M24met异种移植肿瘤(400-600mm 3)的小鼠单剂量的Axitinib或对照(0.5%羧甲基纤维素/ H 2 O)。收集血液和肿瘤组织样品用于药代动力学和VEGFR-2测量。使用Bradford比色测定法测定肿瘤组织中的总蛋白质浓度。给6日龄Sprague-Dawley大鼠腹膜内注射两次Axitinib(30mg/kg)。处死动物,收集视网膜并裂解,并进行免疫沉淀/免疫印迹实验。 ECL-Plus用于检测,使用Alpha Imager 8800进行光密度分析。
细胞实验
在1%FBS(HUVEC)或0.1%FBS(肿瘤细胞)存在下使内皮细胞或肿瘤细胞饥饿18小时。加入Axitinib并将细胞在1mM Na 3 VO 4存在下于37℃温育45分钟。将适当的生长因子加入细胞中,5分钟后,用冷PBS冲洗细胞,并在裂解缓冲液和蛋白酶抑制剂混合物中裂解。将裂解物与免疫沉淀抗体一起在4℃下孵育过夜的蛋白质。将抗体复合物与蛋白A珠缀合,并通过SDS-PAGE分离上清液[2]。
数据来源文献
[1]. Fenton BM, et al. The addition of AG-013736 to rractionated radiation improves tumor response without functionally normalizing the tumor vasculature. Cancer Res. 2007 Oct 15;67(20):9921-8. [2]. Hu-Lowe DD, et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res. 2008 Nov 15;14(22):7272-83 [3]. Allen E, et al. Metabolic Symbiosis Enables Adaptive Resistance to Anti-angiogenic Therapy that Is Dependent on mTOR Signaling. Cell Rep. 2016 May 10;15(6):1144-60
[1]. Quintas-Cardama A, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood, 2010, 115(15), 3109-3117.
[2]. Fleischman AG, et al. The CSF3R T618I mutation causes a lethal neutrophilic neoplasia in mice that is responsive to therapeutic JAK inhibition. Blood. 2013 Nov 21;122(22):3628-31.
[3]. de Bock CE, et al. HOXA9 Cooperates with Activated JAK/STAT Signaling to Drive Leukemia Development. Cancer Discov. 2018 May;8(5):616-631.
[1]. Pedersen MW, et al. Differential response to gefitinib of cells expressing normal EGFR and the mutant EGFRvIII. Br J Cancer. 2005 Oct 17;93(8):915-23. [2]. Moasser MM, et al. The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells. Cancer Res. 2001 Oct 1;61(19):7184-8. [3]. Morgillo F, et al. Synergistic effects of metformin treatment in combination with gefitinib, a selective EGFR tyrosine kinase inhibitor, in LKB1 wild-type NSCLC cell lines. Clin Cancer Res. 2013 Jul 1;19(13):3508-19. [4]. Miyake K, et al. Epidermal growth factor receptor-tyrosine kinase inhibitor (gefitinib) augments pneumonitis, but attenuates lung fibrosis in response to radiation injury in rats. J Med Invest. 2012;59(1-2):174-85. [5]. Noh CK, et al. Simultaneous quantification of volitinib and gefitinib in rat plasma by HPLC-MS/MS for application to a pharmacokinetic study in rats. J Sep Sci. 2017 Jul 27. [6]. Dhar D, et al. Liver Cancer Initiation Requires p53 Inhibition by CD44-Enhanced Growth Factor Signaling. Cancer Cell. 2018 Jun 11;33(6):1061-1077.e6.
[1]. Sun Q, et al. Discovery of fruquintinib, a potent and highly selective small molecule inhibitor of VEGFR 1, 2, 3 tyrosine kinases for cancer therapy. Cancer Biol Ther. 2014;15(12):1635-45.