GFP抗体,实验应用广,100多篇文献引用

GFP抗体,实验应用广,100多篇文献引用

GFP抗体,实验应用广,100多篇文献引用 GFP抗体,实验应用广,100多篇文献引用

产品名称:GFP抗体

产品货号:GTX113617

宿主:Rabbit

克隆:Polyclonal

同种型:IgG

实验应用:WB, ICC/IF, IHC-P, IHC-Fr, IHC-Wm, IP, Dot, ELISA, IHC

产品属性

形式:Liquid

存储溶液:1XPBS (pH7), 1% BSA, 20% Glycerol

存放说明:Store as concentrated solution. Centrifuge briefly prior to opening vial. For short-term storage (1-2 weeks), store at 4ºC. For long-term storage, aliquot and store at -20ºC or below. Avoid multiple freeze-thaw cycles.

浓度:0.17 mg/ml (Please refer to the vial label for the specific concentration.)

免疫原:Full length GFP recombinant protein

纯化方式:Purified by antigen-affinity chromatography.

偶联:Unconjugated

RRID:AB_1950371

别名:Green Fluorescent Protein , GFP , eGFP , enhanced green fluorescent protein

注意事项:仅供实验室使用。不适用于人类或动物的任何临床,治疗或诊断用途。不适合动物或人类食用。

订购详情

品牌 产品名称 产品货号 规格
Genetex GFP antibody GTX113617 100μl
Genetex GFP antibody GTX113617-S 25μl

部分文献引用

Shu-Jung Chang et al. Elife 2022; 11 Typhoid toxin sorting and exocytic transport from Salmonella Typhi-infected cells.

实验应用 : WB

Guofu Zhu et al. Br J Pharmacol 2022; 179 (8) : 1716-1731 A novel peptide inhibitor of Dll4-Notch1 signalling and its pro-angiogenic functions.

实验应用 : IP

Gonzalo P Solis et al. Nat Commun 2022; 13 (1) : 2072 Local and substrate-specific S-palmitoylation determines subcellular localization of Gαo.

实验应用 : WB

Mikkel ? N?rg?rd et al. Sci Rep 2022; 12 (1) : 496 A new transgene mouse model using an extravesicular EGFP tag enables affinity isolation of cell-specific extracellular vesicles.

实验应用 : WB

Miete C et al. Nat Commun 2022; 13 (1) : 674 Gαi2-induced conductin/axin2 condensates inhibit Wnt/β-catenin signaling and suppress cancer growth.

实验应用 : WB

更多详细信息,请咨询GeneTex代理商-上海金畔生物

热疗法对抗人类乳突病毒相关恶性肿瘤之机制基础

热疗法对抗人类乳突病毒相关恶性肿瘤之机制基础

热疗法对抗人类乳突病毒相关恶性肿瘤之机制基础

人类乳突瘤病毒 (Human Papillomavirus, HPV) 是造成子宫颈癌的主要病因,同时也是许多肛门与生殖器系统瘤样病变的原因之一。虽然HPV的疫苗已经研发问世,但仍迫切需要更有效率的治疗方法。今年Wang等科学家发表在「细胞报导」期刊中的一篇科研文章提供了一个相当迷人又有趣的方法。

在受HPV感染的细胞中,具有致癌能力的病毒早期蛋白7 (early protein 7, E7)的mRNA会受到N6-腺苷甲基转移酶复合体 (甲基转移酶样蛋白3与14)的修饰。这个N6-甲基腺苷(N6-Methyladenosine, m6A)修饰能够被m6A读取蛋白的胰岛素样生长因子2 mRNA结合蛋白1 (IGF2BP1)辨认,并结合形成稳定的致癌复合物(E7 mRNA-IGF2BP1 complex)。在小鼠与斑马鱼模式中同样也发现,当受到热压力刺激时,这些复合物会迅速的产生不正常的堆积并形成无法溶解的聚集物;尔后,聚集物会透过泛素蛋白酶体系统降解,进而抑制了这些受到HPV感染的细胞的癌变。

过往许多文献都提及了热疗法对于某些癌症医治的应用,这篇科研文章除了验证了其中的可行性之外,也揭露了构筑此机制的重要分子基础:N6-甲基腺苷修饰的早期蛋白7 mRNA和m6A读取蛋白IGF2BP1之间相互调控的作用。

GeneTex为不同生医科研领域提供了多样化且经充分验证的抗体与试剂,其中也包括了Wang于研究中所使用的HPV type 18 E7 antibody (GTX133412)。欲了解GeneTex 癌症研究与病毒感染领域的相关产品,请咨询我们的代理商上海金畔生物或访问我们的网站www.genetex.com以获取更多信息。

重点产品

热疗法对抗人类乳突病毒相关恶性肿瘤之机制基础 热疗法对抗人类乳突病毒相关恶性肿瘤之机制基础
Human Papillomavirus type 18 E7 antibody [GT881] (GTX634337) Human Papillomavirus type 16 E7 antibody (GTX133411)
热疗法对抗人类乳突病毒相关恶性肿瘤之机制基础 热疗法对抗人类乳突病毒相关恶性肿瘤之机制基础
IGF2BP1 antibody (GTX134816) METTL14 antibody [HL1816] (GTX637541)
热疗法对抗人类乳突病毒相关恶性肿瘤之机制基础
Hsp70 antibody [HL1580] (GTX637059) Ubiquitin antibody [GT7811] (GTX630148)

重点产品

目录号

产品名

应用

GTX131517

FTO antibody

WB, ICC/IF

GTX637059

Hsp70 antibody [HL1580]

WB, IHC-P

GTX111088

Hsp70 antibody

WB, ICC/IF, IHC-P, IP

GTX132686

Human Papilloma virus type 16 E6 antibody

WB

GTX637228

Human Papilloma virus type 16 E7 antibody [HL1647]

WB

GTX133411

Human Papilloma virus type 16 E7 antibody

WB

GTX132687

Human Papilloma virus type 18 E6 antibody

WB

GTX634337

Human Papilloma virus type 18 E7 antibody [GT881]

WB, ICC/IF

GTX133412

Human Papilloma virus type 18 E7 antibody

WB, ICC/IF

GTX134816

IGF2BP1 antibody

WB

GTX113922

IGF2BP2 antibody

WB, ICC/IF, IHC-P, IHC-Fr

GTX637541

METTL14 antibody [HL1816]

WB

GTX105037

METTL3 antibody [N2C2], Internal

WB, IHC-P

GTX630148

Ubiquitin antibody [GT7811]

WB, IHC-P

GTX128826

Ubiquitin antibody

WB

GTX102708

WTAP antibody

WB, ICC/IF, IHC-P

GTX636775

YTHDF2 antibody [HL1355]

WB, ICC/IF, IHC-P, IP

查看相关内容

(1) 小册 – 病毒学研究用抗体

(2) 单页 – 病毒宿主交互作用

(3) 挂图 – 癌症信号

(4) 小册 – 肿瘤标记

参考文献

Cell Rep. 2022 Oct 25;41(4):111546. doi: 10.1016/j.celrep.2022.111546.

更多详细信息,请咨询GeneTex代理商-上海金畔生物

小鼠TMEM119抗体

小鼠TMEM119抗体

产品名称:TMEM119抗体

货号:GTX134087

宿主:Rabbit

克隆:Polyclonal

同种型:IgG

实验应用:IHC-P, IHC-Fr

种属反应:Mouse

实验图片

小鼠TMEM119抗体 小鼠TMEM119抗体

产品属性

形式:Liquid

存储溶液:1XPBS pH7, 20% Glycerol

存放说明:Store as concentrated solution. Centrifuge briefly prior to opening vial. For short-term storage (1-2 weeks), store at 4ºC. For long-term storage, aliquot and store at -20ºC or below. Avoid multiple freeze-thaw cycles.

浓度:1.04 mg/ml (Please refer to the vial label for the specific concentration.)

免疫原种属:Mouse

免疫原:Recombinant protein encompassing a sequence within the center region of mouse TMEM119. The exact sequence is proprietary.

纯化方式:Purified by antigen-affinity chromatography.

偶联:Unconjugated

RRID:AB_2887209

别名:transmembrane protein 119 , AW208946 , BC025600 , obif

订购详情

品牌 产品名称 产品货号 规格
Genetex TMEM119 antibody GTX134087 100μl
Genetex TMEM119 antibody GTX134087-S 25μl

注意事项:仅供实验室使用。不适用于人类或动物的任何临床,治疗或诊断用途。不适合动物或人类食用。

文献引用

Joanna E Pankiewicz et al. Acta Neuropathol Commun 2021; 9 (1) : 157 Absence of Apolipoprotein E is associated with exacerbation of prion pathology and promotes microglial neurodegenerative phenotype.

实验应用 : IHC-P

种属反应 : Mouse

更多详细信息,请咨询GeneTex代理商-上海金畔生物

细胞凋亡与神经系统、心脏疾病

细胞凋亡与神经系统、心脏疾病

1. 细胞凋亡与神经系统疾病

阿尔茨海默病(Alzheimer’s AD)是一种神经退行性疾病,大脑的神经元丢失是最基本的病理改变。近年研究表明,老年斑的核心组成β淀粉样蛋白(amyloid protein β- Aβ),其水平与AD严重程度明显相关,而Aβ的毒性作用的基本特征是神经元凋亡。因而细胞凋亡是AD发病的重要的病理学机制。前体蛋白基因(APP)位于2l号染色体,遗传性的家族型AD患者的Aβ区域附近有7个点突变及其过度表达与AD有关。但是APP的突变仅占AD中的很少一部分,而大部分AD与14号染色体上的PS-1及1号染色体上早老素(presenilinⅡ,PS-2)基因突变相关。

研究亦表明,免疫炎症机制在AD的发生发展中起重要作用。McGeer及Rodgers首先提出AD的神经慢性退行性变可能是脑内免疫与炎症反应不适当激活的结果,超强的免疫反应可“方向错误”性地攻击神经组织,致使细胞损伤及死亡。目前认为,细胞死亡可分两大类,一类是由各种突发的、意外的事件所致的细胞死亡,即病理性细胞死亡。形态学上表现为细胞坏死;另一类为生理性细胞死亡,形态学上表现细胞凋亡。一般而言,细胞凋亡过多,会引起退行性变或早衰。AD患者的海马神经元之中有TRPM-2RNA表达。是神经细胞凋亡的一种表现。近期实验研究提示:细胞凋亡为衰老及AD等神经退行性疾病神经元丧失的原因之一,内外因素激活细胞自身基因程序而引起神经元凋亡。

中枢神经系统(CNS)不同部位特殊类型神经元的逐渐丧失是各种神经退变性疾病的病理特点。在发育期间CNS是一个强烈的凋亡部位(估计50%~80%的CNS神经元在发育期间死亡)。在成年时其存活似乎有赖于BcI-XL这样的促生存基因的表达。CNS可能特别容易受凋亡途径紊乱的损害,特别是涉及钙和自由基生成的途径。凋亡细胞的死亡及其辅助分子介质可能在许多神经退变性疾病均有作用,例如早老性痴呆、帕金森病、脊柱肌肉萎缩和肌萎缩性侧索硬化。

近年发现早老素2(presenilin2)基因的突变与家族性早老性痴呆有关。推测prsenilin2在凋亡途径中起Fas下游的作用。Presenilin2的鼠同系物可防止T淋巴细胞上的FasL上调,正常情况下此现象发生于T细胞与家族性异体肽结合被激活时。在PCI2神经元细胞系中,正常的presenilin2的过度表达导致凋亡;从家族性早老性痴呆的主要特征之一是在脑中形成淀粉样蛋白β斑,此外,神经元凋亡的阈值亦发生改变。在原代培养的人类神经元,淀粉样蛋白β的肽碎片能下调抗凋亡的Bcl-2的表达,并上调凋亡的Bax的表达,从而使神经元更易死亡,尤其是在氧化应激反应时。

帕金森病以纹状体多巴胺能的神经元变性为特点,考虑系在对氧化损伤的反应中,通过凋亡和坏死死亡。虽然造成帕金森病的基因较造成早老性痴呆的基因更难捉摸,但帕金森病的治疗证明其发生与抑制凋亡密切相关。在历史上,盐酸selegiline药物曾用于治疗帕金森病,因其能不可逆转地抑制单胺氧化酶B,因此可增强多巴胺的信号。近年发现,selegiline能特异地改变细胞死亡和生存基因的转录,包括过氧化物歧化酶、Bcl-2和BeI-XL、一氧化*氮合成酶和烟酰胺腺嘌呤二核苷酸脱氢酶。与此相反,selegi-1ine对单胺氧化酶B的作用可能是次要的。Selegiline可防止线粒体膜电位的进行性还原,因而可抑制线粒体释放促凋亡物质。

既然,细胞凋亡的调节紊乱与疾病的发生密切相关,因此,对细胞凋亡的研究可以为疾病的治疗提供新的思路。如帕金森病、AD等由于神经细胞过度过早老化而发生的疾病可通过阻断细胞凋亡而预防。目前,已发现原位癌基因Bcl-2具有抗神经元凋亡的作用,其抑制依赖于神经生长因子的神经细胞过度凋亡,也可阻断放射线细胞毒性,和缺氧等所导致的神经元凋亡。促进其表达,则可减少神经元丢失,为神经退行性变的治疗带来希望。细胞凋亡需要蛋白质的主动合成,因此,某些蛋白质合成抑制剂。可阻断Aβ所诱导的神经元细胞凋亡,亦可减少急性脑缺血所致的梗塞范围,细胞凋亡的起动,需核酸内切酶的激活,钙离子是核酸内切酶活性所必须的,应用钙离子拮抗剂抑制核酸内切酶活性,可阻止核内DNA降解和细胞凋亡。此外,某些营养因子、神经生长因子和一些凋亡阻抑因子亦有可能应用于抑制神经细胞凋亡。

已经肯定,凋亡机制在肿瘤发生中的作用,对肿瘤的治疗,可以通过诱发肿瘤细胞的凋亡,而不一定要直接杀伤肿瘤细胞。Piacentimi等发现神经母细胞瘤细胞阻断在不同周期均可出现细胞凋亡。并认为该细胞周期内的凋亡存在着多个启动点,对胶质细胞瘤通过转导TK基因促进肿瘤细胞自杀或转导TNF基因分泌TNF诱发凋亡已取得成功,为攻克胶质细胞瘤带来了曙光。

一些研究表明,放射线对肿瘤细胞的杀伤作用,是通过p53基因的起动诱导肿瘤细胞的凋亡的。大多数化疗药物均可在不同类型的肿瘤细胞中诱发凋亡,化疗效果取决于肿瘤细胞对凋亡的敏感性,然而肿瘤细胞抗药性也抗凋亡,一些胶质细胞瘤由于表达P-糖蛋白致使细胞对一些化疗药物产生抗药性。用维拉帕米抑制P-糖蛋白活性,则可诱导肿瘤细胞凋亡,但药物剂量较敏感细胞为高。

2. 细胞凋亡与心脏疾病

在心脏发育过程中,细胞凋亡对于房室间隔、瓣膜及血管结构的形成有重要意义,凋亡过度或不足均可导致先天性心脏病发生。过度凋亡可导致缓慢型心串失常与猝死。细胞凋亡同内皮增生相伴而行,也参与这一过程,它对内皮的损伤、增生的抑制,粥样病灶的形成和斑块的剥落有着一定影响,细胞凋亡在动脉粥样硬化发生、演化化过程中可能起着独特的调节作用。

原发型高血压的发病及高血压所致器官损伤与细胞凋亡有关,凋亡并非由高血压直接引起,而是由其他因素如缺血缺氧、细胞内钙离子超载、血压升高产生的机械力等介导,一些抗高血压的作用机制也与细胞凋亡有关。

以前认为病毒性心肌炎是病毒直接侵害心肌并通过免疫变态反应而致病,现认为心肌细胞凋亡也是病毒性心肌炎的病情演变的一个原因,尤其是慢性心肌炎。细胞凋亡多发生于慢性心肌炎或心肌炎晚期。许多形式的心肌肥厚又具有局部心肌组织非炎症性退化的特征,提示心肌细胞存在一种非坏死的死亡方式,在人类扩张性心肌病的心肌组织中有典型的凋亡特征。在心律失常中的QT延长综合症的窦房结的退化改变,现已证实与窦房结细胞凋亡有关。细胞凋亡是右室心肌细胞减少的重要原因,是促发室性心率失常的病理基础之一。在心脏排异期,细胞毒细胞是介导破坏的主要免疫细胞,它通过坏死因子,Fas/FasL和颗粒酶/穿孔素系统使靶细胞溶解,而这些机制又可诱导细胞调亡,同种异体慢性排异反应中也证明有心肌细胞的凋亡现象。在缺血性心脏病、心肌炎、心肌病、心肌梗塞所致的心功能不全,细胞凋亡可能起着重要作用。再灌注损伤和心肌梗死均能诱发心肌细胞凋亡,细胞凋亡参与人类心肌梗死的病理过程。心肌缺血——再灌注损伤中有细胞凋亡的参与,近期的研究也表明心肌病高血压、冠心病、心率失常、心力衰竭、淬死、动脉粥样硬化等许多心血管疾病的发生发展与细胞凋亡现象的多寡有关,在心肌缺血——再灌注损伤中细胞凋亡亦有重要意义。

如需了解相关产品,请联系我们上海金畔生物

DNA/RNA 损伤(8-OH-dG)抗体

DNA/RNA 损伤(8-OH-dG)抗体

DNA/RNA 损伤(8-OH-dG)抗体 使用小鼠抗DNA损伤抗体 (SMC-155) 对小鼠受伤视网膜模型的免疫组化分析. 克隆号 15A3. 组织样本: 受伤视网膜模型. 样本物种: 小鼠. 一抗: 小鼠抗DNA损伤 抗体 (SMC-155), 稀释度 1:1000. 二抗: Alexa Fluor 594 山羊抗小鼠 (red). 图片来自: Dr. Rajashekhar Gangaraju, University of Indiana, Department of Opthamology, Eugene and Marilyn Glick Eye Institute.
DNA/RNA 损伤(8-OH-dG)抗体 使用小鼠抗DNA损伤抗体 (SMC-155) 对小鼠发炎的结肠的免疫组化分析. 克隆号 15A3. 组织样本: 发炎的结肠. 样本物种: 小鼠. 固定: 福尔马林. 一抗: 小鼠抗DNA损伤 抗体 (SMC-155), 稀释度 1:1000000, 4℃下孵育12小时. 二抗: Biotin 山羊抗小鼠, 稀释度1:2000, 室温下孵育1小时. 复染色: Mayer氏苏木素 (紫色/蓝色) 细胞核染色, 稀释度200uL, 室温下2分钟. 放大倍数: 40x. 有抗菌剂. 该图片使用了放大IHC信号的清洗缓冲液, 所以抗体稀释度比其他应用建议的要更稀释.
DNA/RNA 损伤(8-OH-dG)抗体 使用小鼠抗DNA损伤抗体 (SMC-155) 对小鼠背部皮肤的免疫组化分析. 克隆号 15A3. 组织样本: 背部皮肤. 样本物种: 小鼠. 固定: Bouin氏固定液, 石蜡包埋. 一抗: 小鼠抗DNA损伤 抗体 (SMC-155), 稀释度 1:100, 室温下孵育1小时. 二抗: FITC 山羊抗小鼠 (绿色), 稀释度1:50, 室温下孵育1小时. 图片来自: Dr. Turksen, Ottawa Hospital Research Institute, Canada.
使用小鼠抗DNA损伤抗体 (SMC-155) 对大鼠缺血的新鲜大脑组织的免疫组化分析. 克隆号 15A3. 组织样本: 缺血的新鲜大脑组织. 样本物种: 大鼠. 一抗: 小鼠抗DNA损伤 抗体 (SMC-155), 稀释度 1:1000, 室温下隔夜孵育. 二抗: Alexa Fluor 546 山羊抗小鼠 (Red), 稀释度1:500, 室温下孵育1小时. 细胞定位: 大脑皮层. 图片来自: Dr. Yi Yang, U. New Mexico.

产品名称:DNA/RNA 损伤(8-OH-dG)抗体

产品货号:SMC-155

产品描述:小鼠抗DNA/RNA 损伤(8-OH-dG)单克隆IgG2b

适用物种:与物种无关

应用范围:IHC, ICC/IF, ELISA, DB, IP, FCM, FA

抗体稀释度:IHC (1:1000); 用户需根据具体情况决定最适合的稀释度.

宿主:小鼠

免疫原:8-羟基-鸟苷-BSA 和 –酪蛋白轭合物

浓度:1 mg/ml

标记物:APC, ATTO 390, ATTO 488, ATTO 594, Biotin, FITC, HRP, PerCP, RPE, 无标记, 碱性磷酸酶

产品特征

储存缓冲液:PBS, 50% 甘油, 0.09% 叠氮化钠*标记抗体的缓冲液可能不同

储存温度:-20ºC

运输温度:蓝冰或 4ºC

纯化方式:Protein G 纯化的

克隆性:单克隆

克隆号:15A3

亚型:IgG2b

特异性:识别DNA氧化损伤的标志物 (8-羟基-2’-脱氧鸟苷, 8-羟基鸟嘌呤 和 8-羟基鸟苷).

引用该产品:StressMarq Biosciences Cat# SMC-155, RRID: AB_889490

别名:8-Hydroxy Guanine 抗体, 8-OH-dG 抗体, 8OHG 抗体, 80G 抗体, 8 hydroxyguanine 抗体, 8 hydroxy 2′ deoxyguanosine 抗体, 8 hydroxyguanosine 抗体, 8 OHG 抗体, 8-OHG 抗体, 8OHdG 抗体

研究领域:DNA 损伤和修复, DNA/RNA, 表观遗传学和细胞核信号传导, 癌症, 氧化应激, 细胞信号传导, 翻译后修饰, 氧化

文献引用

Inhibition of DNA repair pathways and induction of ROS are potential mechanisms of action of the small molecule inhibitor BOLD-100 in breast cancer.

Bakewell, S. et al. (2020) Preprints 12(9):2647.

PubMed ID: 32947941 适用物种 Human 应用范围: Western Blot

H-ferritin expression in astrocytes is necessary for proper oligodendrocyte development and myelination.

Cheli, V.T. et al. (2021) Glia. Online ahead of print.

PubMed ID: 34460113 适用物种 Mouse 应用范围: Immunohistochemistry

Mutant NMNAT1 leads to a retina-specific decrease of NAD+ accompanied by increased poly(ADP-ribose) in a mouse model of NMNAT1-associated retinal degeneration.

Greenwald, S.H. et al. (2021) Hum Mol Genet. ddab070.

PubMed ID: 33709122 适用物种 Mouse 应用范围: Immunohistochemistry

更多详细信息,请联系Stressmarq国内代理商-上海金畔生物

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG®Linker连接平台

 

术语dPEG®代表离散PEGdiscrete PEG,这是一种均一的、单分子量(MW)、高纯度的新一代聚乙二醇聚合物。Vector Laboratorie采用其受专利保护的专有生产工艺,可生产提供适合于各种应用场景,具有特定分子量、活性基团、功能分子和架构(如图1和图2所示)dPEGPEG分子本身具有惰性、无毒性、水溶性和生物相容性,这些特性与dPEG的上述所提及的特征相结合时,它将成为设计、优化与开发生物偶联疗法的强有力工具[1][2]


Vector Labs可提供的dPEG产品种类

基于dPEG的系列产品

◆ 用于偶联生物制品、有效载荷、载体和表面的Homo-hetero-和多功能交联剂。

◆ 各类反应基团种类繁多,可用于偶联反应的基团,包括点击化学(click chemistry),生物正交(biorthogonal),位点特异性(site-specific),酶催化(enzymatic)和随机方法(stochastic approaches)。

◆ 柔性Linker架构设计的构建模块和中间体。

◆ 具有各种规格、结构和加帽的化学修饰试剂。

◆ 用于聚合物和脂质纳米颗粒的嵌段共聚物。

◆ 亲和标签,如生物素、脂质和半抗原等

◆ 高亲水性的荧光基团

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台 

1dPEG® 产品的功能基团、反应基团、标记基团和保护基团示例。

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

2dPEG®产品的可用架构。支链dPEG®产品可以有3个或9个分支。Sidewinder™产品是一类新的dPEG®结构,可通过多种新方式将dPEG®应用于诊断和治疗行业。BodyArmor®产品结构类似于Sidewinder,但其包括额外的正交dPEG®链。

 

dPEG与传统PEG的比较

传统的PEG(聚乙二醇)具有较大的分子量,并具有分散性。其在药物开发中的首次临床应用是对蛋白质、肽和酶(OncasparAdagenPeg-Intron等)进行PEG化,以改善其药物代谢和药代动力学 (DMPK) 特性。 这种通过共价连接PEG来改变药物理化(PC)或 DMPK特性的方法目前已用于多种治疗方式,包括抗体片段、肽、小分子、寡核苷酸和纳米颗粒等。


Vector LaboratoriesdPEG或均一PEG(均质PEG)可用于进一步优化药物理化和治疗药物的吸附、分布、代谢、消除和毒性(ADMET)特性,以达到靶向性、溶解性和稳定性的要求。表1列举了dPEG与传统PEG 相比的一些优势。

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

1:传统PEGdPEG的区别。

 

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

Fig1  传统PEGdPEG®(Vectorlabs)质谱图比较

 

dPEG的广泛应用

由于其独特的生物相容性、一致性和可设计性,dPEG可在各种应用中提供良好的性能,主要包括以下方面:

◆ 作为偶联物的Linker,如抗体药物偶联物(ADCs)、片段药物偶联物(FDCs)、蛋白质药物偶联物(PDCs)、小分子药物偶联物(SMDCs)、寡核苷酸偶联物(OCs)和药物传递系统(DDS),没有烷基linker的疏水性和多分散linker的不确定性(见表2)。

◆ 间隔剂和空间修饰试剂(Spacers and spatial modifiers),以高度的灵活性探索和优化临近效应(proximity effects)。

◆ 表面调节剂用于改变小分子、寡核苷酸、多肽、蛋白质、抗体、聚合物、树状大分子、脂质纳米颗粒和无机表面/纳米颗粒的大小、形状、电荷、疏水性、渗透性等

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

2:不同交联剂类型的比较

 

dPEG与传统PEG以及其他烷基交联剂产品的优势。

作为LinkerdPEG

研究证明,通过交联剂将不同物质结合在一起的能力已被证明是诊断和药物输送系统中非常有用的一项技术。由多分散PEG组成的交联剂已被用于制备多种多聚物以及将靶向配体偶联到纳米颗粒上。这通常用于需要非常大的尺寸以提供良好的DMPK性能并且受多分散性影响较小。然而,一些特性,如靶结合或细胞内化,可能会受到大尺寸的不利影响,进而对PEG链长度变化的治疗敏感性也会有所差异。但是,更小的均一dPEG则可以解决这些难题。由小烷基组成的传统交联剂(如SPDP, SIAB, SMCC, EMCS等)多年来也一直是用于生物偶联的支柱,但随着共轭设计变得更加复杂,它们固有的疏水性也导致其应用受到限制。例如,当多个实体分子共轭在一起或进行接近性分析时,连接剂成分对克服固有的疏水性至关重要。虽然有几种烷基连接剂能够以磺化形式存在,可以提高较小的连接剂的水溶性,但它们在较大结构中的应用中仍然存在问题。此外,多种带负电荷的磺酸盐也可能会导致非特异性相互作用。


dPEG产品将烷基连接物的精确性以及PEG的生物相容性结合在一起,没有任何疏水缺陷,具有高度的灵活性,并且其拥有多种独特的结构来确定结构功能关系并优化偶联性质。在下面的例子中,Vector Laboratories展示了dPEG linker的独特优势。


【小分子偶联物(Small molecule conjugates)

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

有研究证明了使用dPEG将小分子与诊断显像剂连接起来的优势。例如,当用2 kDa PEG1 kDa PEGdPEG24交联剂制备荧光素标记的叶酸二聚体时,具有dPEG24交联的二聚体表现出最高的细胞摄取量。在另一项关于多肽多聚体的研究中,PCMA靶向配体的两种二聚体通过两种均一的PEG4 linkerDOTA结合,提供了一种四聚体,比二聚体和单体结合物具有更好的药代动力学特点(PK)和肿瘤靶向性。

  

多肽偶联物(Peptide Conjugates)

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

研究表明,dPEG间隔剂(dPEG spacers)可以改善多肽药物偶联物的性能。例如,可以通过使用dPEG4间隔剂提高RGD-隐霉素偶联物的溶解度。此外,dPEG4还可以促进RGD-Glu-MMAE偶联物的有效载荷释放。

 

寡核苷酸偶联物(Oligo Conjugates)

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

目前,寡核苷酸药物的递送是限制其应用的主要障碍之一。因此,科研工作者们研发设计了多种基于PEG交联剂的提送系统用于寡核苷酸偶联物的递送,包括抗体偶联物,肽偶联物和脂质偶联物。例如,有多种脂质寡核苷酸偶联物(lipid-ON conjugates),包括线性和SideWinder®dPEG4间隔剂,可用于调节药代动力学表现和跨膜递送。

 

降解物和降解物偶联物(Degraders and Degrader Conjugates)

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

邻近诱导降解(Proximity-induced degradation)是一种很有前景的新方法,可用于对无法药物治疗的靶点进行药物治疗的研究,且PROTACs是较受欢迎的降解物之一。连接酶和目标蛋白的配体之间的连接物通常是烷基linker或短而均一的PEG4 linker,它们在PROTAC的开发中起着关键作用。通过优化dPEG的长度可以实现高效的降解,并且一些基于dPEGlinker有助于设计可点击PROTAC,从而更快地优化配体组合。

 

片段偶联物(Fragment Conjugates)

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

目前,正在研发中的片段偶联物有望克服与抗体大尺寸相关的研究难点,例如抗体药物扩散性和肿瘤组织穿透力差等。由于抗体片段的尺寸较小,连接体linker的特性可以在修饰偶联物的性质方面发挥更大的作用。例如,使用不同长度的dPEG间隔剂将靶向双特异性抗体的TAG72DOTA进行交联。dPEG48间隔剂能够增加双特异性抗体的流体力学体积,从而减少肾脏清除率,提高肿瘤摄取。其中dPEG48间隔剂提供最高的肿瘤/肾脏比率。Vector LabsSideWinder®交联剂也被证明对diabody-TCO-MMAE偶联物有益,其中较小体积的生物制剂需要正交PEG修饰剂来防止TCO触发物在体内失活。

 

抗体偶联物(Antibody Conjugates)

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

抗体偶联药物(ADC)利用dPEG间隔剂的特性来抵消疏水性有效载荷的不利影响,并改善PCPKBD和毒性。虽然线性dPEG交联剂提供了疏水性降低的有效载荷(例如,特西林),但类Sidewinder™的交联剂已被证明可以增加肿瘤摄取,减少脱靶摄取,并提高ADC对各种有效载荷的耐受性。此外,有研究证实,类BodyArmor™ linker还可以提供额外的结构变量,用于控制有效载荷保护和酶介导的有效载荷释放。

 

纳米颗粒偶联物(NP Conjugates)

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

纳米颗粒通常通过被动靶向改善药物递送,目前正在探索通过连接靶向目标实现主动靶向。传统而言,这一方法是通过多分散的PEG交联剂实现的,但抗原结合和细胞内化都受到PEG涂层和交联剂中EO单位数量的影响。在一项关于靶向胶束和脂质体的研究中发现,使用不同长度的dPEG交联剂连接整合素或HER2靶向肽,细胞内化取决于dPEG长度、靶向抗原和纳米颗粒的类型。只有dPEG才能优化具有这种粒度的靶向纳米颗粒的的性能。


共价连接dPEG可作为PCADMET性能改良剂

抗体片段(Antibody fragments)

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

工程抗体片段的 PEG 化通常使用较大的多分散 PEGCimziaDapirolizumab Pegol 等)来延长小分子量蛋白的半衰期。最近,Genentech公司的研究人员注意到,将多种Fab偶联物与16 kDa的支链dPEGQBD-11487)偶联后,其流体力学半径约为5 nm,超过了公认的肾脏过滤尺寸临界值。另外,Astra Zeneca 公司的研究人员制备了一组双特异性抗体偶联物,并注意到通过与较小支链的 5 kDa dPEG(如 QBD-11471)偶联,双特异性抗体的尺寸可从 2.9 nm 增加到 3.3 nm。虽然该偶联物仍表现出明显的肾脏积聚,但药物的半衰期相对于原Fab药物增加了7.5倍,而且在肺、脾和皮肤中的组织/肿瘤比率相对于含有较大多分散PEG偶联物更为有利。

 

肽(Peptides)

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

将肽PEG化或将PEG共价连接到肽上,仍然是改善肽的DMPK特性的一种很有吸引力的方法。目前处于临床试验阶段的肽-PEG偶联物包括艾塞那肽、肾上腺髓质素和培莫沙肽(exenatide, adrenomedullin, and sihematide)。将较小的均一PEG(如dPEG)共价连接到肽上,以改变其物理化学性质和ADMET特征,最近取得了更多成功。例如,临床前研究表明,dPEG24 (QBD-11304)与甘丙肽和NPY肽结合可防止它们穿过血脑屏障 (BBB),从而使中枢和外周作用分离,同时促进镇痛活性。将dPEG24加入Zilucoplan的结构中[3]也被证明具有良好的PCDMPK特性,该疗法最近获得FDA批准,用于治疗成人患者的重症肌无力(gMG)。

 

小分子(Small molecules)

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

早期的临床前研究一般采用大PEG作为载体,以延长小分子的半衰期,改善疏水性小分子的水溶性,并通过被动储存来改善肿瘤靶向性。将小dPEG与小分子偶联以改善 PC 性能或体内性能的成功案例数不胜数。例如,于2014年获批的,Movantik,其使用一种小而均匀的PEG7偶联μ-阿片样物质拮抗剂(μ-opioid antagonist)来防止穿过血脑屏障,以促进治疗阿片诱导的便秘(OIC),且无中枢神经系统活性。

 

寡核苷酸(Oligonucleotides (ONs)

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

虽然核苷或磷酸骨架的化学衍生化解决了治疗性寡核苷酸的许多潜在问题,但包括反义核酸、转义核酸、siRNAmiRNA在内的各种核酸都被PEG化了。研究发现,短dPEG12能够与siRNA的有义链或反义链偶联,并且对mRNA敲除没有不利影响;短 dPEG12 与磷酸二酯和硫代磷酸酯反义制剂连接,对基因沉默能力也没有不利影响。因此,小 dPEGsmall dPEGs) 可增强寡核苷酸的化学衍生作用。


纳米颗粒(NPs)和药物输送系统(Nanoparticles (NPs) and Drug Delivery Systems)

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台 

纳米颗粒有多种形式,包括树状大分子聚合物、聚合纳米颗粒、脂质纳米颗粒和无机颗粒。虽然它们都有特定的考虑因素,但纳米颗粒表面的PEG化已被证明对大多数形式有益。其PEG化可以避开免疫系统的识别和清除,并减少血清蛋白的非特异性吸附。目前已经有几种PEG化纳米颗粒在临床得到使用(SpikevaxComirnaty等)。另外,还有更多的PEG化纳米颗粒正处于临床试验阶段(如PromitilThermoDox等),所有这些都使用2kDaPEG。虽然这通常是多分散PEG的领域,但也有采用这种截留分子量的dPEG产品。并且大量研究表明,包括PEG长度在内的变量可能有利于血清蛋白的吸附、通过粘液和细胞外基质的运输,以及加速血浆清除过程。

 

dPEG在化学和生物学的十字路口

总而言之,dPEG技术是众多生物偶联疗法和临床诊断分析的基础。众多研究已经展示了基于dPEG linker的实用性,并阐述了这种交联剂优越的靶标特异性,其能够改善肿瘤摄取并具有更低的毒性。使用dPEG作为连接剂(linker)、改性剂、嵌段共聚物或功能标签的优势在于它的离散性,这是传统PEG所不具备的。


Vector Laboratories拥有深厚的技术专长和制造能力,可以帮助您设计和开发独特的基于dPEG的产品,以便将其运用到您的偶联方案中。通过BioDesign服务,我们可以为您提供个性化的专家指导咨询,将您的生物偶联疗法提升到一个新的水平。

 

 

文献引用

① Jinming Hu., Shiyong Liu., et al. (2022). Emerging trends of discrete Poly(ethylene glycol) in biomedical applications. Curr Opin Biomed Eng, V. 24(100419), 2468-4511.

② Quiles S., Raisch K.P., Sanford L.L., Bonner J.A., Safavy A., et al. (2010). Synthesis and preliminary biological evaluation of high-drug-load paclitaxel-antibody conjugates for tumor-targeted chemotherapy. J. Med. Chem., 53(2), 586-94.

③ Giese M.W., Woodman R.H., Hermanson G.T., Davis P.D., et al. (2021). Chapter 9: The Use of Uniform PEG Compounds in the Design of ADCs. The Royal Society of Chemistry, ch. 9, 286-376. [The Royal Society of Chemistry]

④ Tiberghien A.C., Levy J.N., Masterson L.A., Patel N.V., Adams L.R., Corbett S., Williams D.G., Hartley J.A., Howard P.W., et al. (2016). Design and Synthesis of Tesirine, a Clinical Antibody-Drug Conjugate Pyrrolobenzodiazepine Dimer Payload. ACS Med Chem Lett., 7(11), 983-987. [PubMed]

 Giese M., Davis P.D., Woodman R.H., Hermanson G., Pokora A., Vermillion M. et al. (2021). Linker Architectures as Steric Auxiliaries for Altering Enzyme-Mediated Payload Release from Bioconjugates. Bioconjugate Chemistry, 32(10), 2257-2267. [ACSPub]

⑥ Tang G. Q., Tang Y., Dhamnaskar K., Hoarty M.D., Vyasamneni R., Vadysirisack D.D., Ma Z, Zhu N., Wang J.G., Bu C., Cong B., Palmer E., Duda P.W., Sayegh C., Ricardo A., et al. (2023). Zilucoplan, a macrocyclic peptide inhibitor of human complement component 5, ⑦ uses a dual mode of action to prevent terminal complement pathway activation. Front Immunol., 14, 1213920. [PubMed]

 

 

品牌简介

Vector Laboratories|用于生物偶联疗法BioDesign™ dPEG® Linker连接平台

Vector Laboratories位于旧金山湾区,由Jim Whitehead博士于1976年创建该品牌,Vector致力于为世界各地的研究人员创造性能最佳的产品。2016年被Maravai LifeSciences品牌收购,成为其品牌一部分。Vector Laboratories是研发免疫组织化学、免疫荧光、糖生物学和生物结合的标记和检测试剂的先驱,并已成为该领域市场的领导者。作为第一家开发出avidin-biotin酶复合物试剂盒(VECTASTAIN ABC试剂盒)用于免疫组织化学染色和抗荧光淬灭封片剂(VECTASHIELD® Mounting Media)用于免疫荧光染色的商业化公司,Vector已经从世界各地引进了600多种用于疾病和治疗研究的试剂和试剂盒。Vector的设施通过了ISO 9001:2015认证,其研究成果已被350,000多种科学出版物引用。

 

 

请联系Vector Laboratories中国代理商——上海金畔生物

Vector产品经理:15221999938 微信同号


Atlas Antibodies热销Top10癌症标志物PrecisATM单克隆抗体

Atlas Antibodies热销Top10癌症标志物PrecisATM单克隆抗体

PrecisATM系列单克隆抗体是瑞典抗体生产商Atlas Antibodies公司生产的、来源于小鼠细胞的单克隆抗体。这些抗体靶标,是公司的研发者通过对目前研究热门的蛋白、肿瘤标志物marker以及临床科研需求等进行综合考虑,研发出了这些高品质抗体。

PrecisATM系列单克隆抗体,具有其独特的非重叠抗原表位、可实现与同型克隆的区分;并且保证其抗体的特异性、重复性、稳定性和安全型。另外,该系列抗体均经过IHC, WB,ICC-IF以及Multiplexing等实验应用的验证。

PrecisATM系列单克隆抗体涵盖癌症/肿瘤标志物marker、干细胞、神经科学、细胞生物学、免疫&炎症等学科。抗体种类达上千种。

以下是其热销产品染色举例:

Atlas Antibodies热销Top10癌症标志物PrecisATM单克隆抗体 Atlas Antibodies热销Top10癌症标志物PrecisATM单克隆抗体 Atlas Antibodies热销Top10癌症标志物PrecisATM单克隆抗体
Anti-ESR antibody (AMAb90867) Anti-PODXL antibody(AMAb90644) Anti-SALL4 antibody (AMAb91768)
Atlas Antibodies热销Top10癌症标志物PrecisATM单克隆抗体 Atlas Antibodies热销Top10癌症标志物PrecisATM单克隆抗体 Atlas Antibodies热销Top10癌症标志物PrecisATM单克隆抗体
Anti-POSTN antibody (AMAb91763) Anti-BRAF antibody (AMAb91257) Anti-CHGB antibody(AMAb91710)
Atlas Antibodies热销Top10癌症标志物PrecisATM单克隆抗体 Atlas Antibodies热销Top10癌症标志物PrecisATM单克隆抗体 Atlas Antibodies热销Top10癌症标志物PrecisATM单克隆抗体
Anti-ID1 antibody (AMAb91756)  Anti-EZH2 antibody (AMAb91750) Anti-P53 antibody (AMAb90956)

癌症/肿瘤标志物热销Top10产品:

更多详情请联系Atlas Antibodies中国代理商上海金畔生物

Cargille——显微镜浸油专家 Immersion Oils

Cargille——显微镜浸油专家 Immersion Oils

Cargille——显微镜浸油专家  Immersion Oils

美国Cargille Laboratories公司成立于1924年,服务于涉及显微镜和光学研究的许多实验室。几十年来,Cargille一直在显微镜浸油的开发和标准化方面处于领先地位,Cargille浸油无色、无味、无毒,达到甚至超过 ISO 8036-1标准,Cargille也参与了浸油ISO规范的制订。此外,Cargille还可提供高稳定性的激光液体、折射率匹配液、糖度标准液、封片剂、光学凝胶、熔融石英匹配液体等。

显微镜浸油主要用于浸泡显微镜物镜,其配方要求具有良好的光学效应,在使用过程中浸油构成了显微镜光学系统的一部分,在采用高倍物镜观察玻片标本时,能获得最佳的光学效果,以保证成像质量。

 

怎样选择合适的显微镜浸油?

Cargille——显微镜浸油专家  Immersion Oils 


● 用于普通光学显微镜——Type A 和 B

Type A和B浸油相比其他型号产量大,也是最经济的型号。A型和B型可以互换,并且可以混溶以获得中等粘度。可以根据您的具体应用的最佳粘度来选择。
A型(低粘滞度):Cargille浸油中粘度最低的一款(150cSt),易于使用,尤其适合初学的学生使用。

B型(高粘滞度):1250cSt,可以同时观察多张切片,在批量处理过程中可节省时间。


● 产品信息

产品货号

产品名称

规格

16482

IMMERSION OIL TYPE A

1/4 fl.oz., 1 fl.oz., 4 fl.oz., 16 fl.oz.

16484

IMMERSION OIL TYPE B

1/4 fl.oz., 1 fl.oz., 4 fl.oz., 16 fl.oz.

● 用于自动血液学系统——Type 300

自动血液学系统依赖于精确控制的浸油的物理和光学特性来实现成功成像和机械加工。Type 300的设计和生产满足该类设备的严格要求,包括专门的粘度和对一致性的严格控制。


● 产品信息

产品货号

产品名称

规格

16252

IMMERSION OIL TYPE 300

1/4 fl.oz., 1 fl.oz., 4 fl.oz., 16 fl.oz.

 

● 用于倒置、倾斜、投影和长焦距的仪器——Type NVH和OVH

盖玻片和物镜之间,或者玻片和聚光镜之间的间隙越大 ,就越需要高粘度的浸油。非常高粘度的型号NVH(21,000cSt)和OVH(46,000cSt)为这些应用提供了极好的结果。


● 产品信息

产品货号

产品名称

规格

16485

IMMERSION OIL TYPE NVH

1/4 fl.oz., 1 fl.oz., 4 fl.oz., 16 fl.oz.

16487

IMMERSION OIL TYPE OVH

1 fl.oz., 4 fl.oz., 16 fl.oz.

 

● 用于荧光显微镜—— Type LDF,HF和FF

LDF和HF型荧光极低,FF型几乎无荧光,但不符合ISO标准。HF型的荧光比LDF型略强,但不含卤素。对于大多数非重要的荧光显微镜应用,A型和B型的荧光强度足够低。LDF,HF和FF型浸油的粘滞度分别为500 cSt, 700 cSt和170 cSt。

● 产品信息

产品货号

产品名称

规格

16241

IMMERSION OIL TYPE LDF

1/4 fl.oz., 1 fl.oz., 4 fl.oz., 16 fl.oz.

16245

IMMERSION OIL Type HF

1 fl.oz., 4 fl.oz., 16 fl.oz.

16212

IMMERSION OIL TYPE FF

1/4 fl.oz., 1 fl.oz., 4 fl.oz., 16 fl.oz.

 

● 高温(> 23℃至37℃)——Type 37

温度升高可能是由于台下照明,“热台”,或其他原因造成的,Type 37是用于这些情况的理想浸油。Type 37专门为在人体温度下工作而开发,37℃时的折射率为1.515,粘度为1250cSt,解决了高于标准校准温度23℃时图像退化的问题。用户可以根据自己的工作温度混合Type B(23℃时粘度为1250cSt)使用,来保持恒定的粘度和光学值,并将校准温度按比例设于23℃至37℃之间。


● 产品列表

产品货号

产品名称

规格

16237

IMMERSION OIL TYPE 37

1 fl.oz., 4 fl.oz., 16 fl.oz.

16240

IMMERSION OIL TYPE 37LDF

1/4 fl.oz., 1 fl.oz., 4 fl.oz., 16 fl.oz.

 

● 混合油的混相组

Type A,B,300,NVH和OVH浸油可以混溶。混合任何两个浸油可得到中间粘度的浸油,同时保持两者共同的光学特性。Cargille可以提供小包装浸油套装。

 

Cargille——显微镜浸油专家  Immersion Oils

 

产品货号

产品名称

组分

16490

Immersion Oil Sampler (5) Poly-Pak

1/4 fl. oz Type A Immersion Oils*2瓶

1/4 fl. oz Type B Immersion Oil*1瓶

1/4 fl. oz Type 300 Immersion Oil*1瓶

1/4 fl. oz Type NVH Immersion Oil*1瓶

 

 

 

请咨询Cargille Laboratories全国代理-上海金畔生物

从ChIP-seq到CUT&RUN和CUT&Taq,哪种染色质分析法更适用您的实验?

从ChIP-seq到CUT&RUN和CUT&Taq,哪种染色质分析法更适用您的实验?

从ChIP-seq到CUT&RUN和CUT&Taq,哪种染色质分析法更适用您的实验?

被广泛使用的传统ChIP-seq与新技术CUT&RUN和CUT&Tag,如何决定哪种染色质分析法更适合您的实验呢?在这里,我们将根据EpiCypher的经验帮您确定最佳检测方法。


关键点1:为何要告别ChIP-seq?

● 样本要上百万个细胞——不适用于珍贵细胞类型或临床样本

● 繁琐的操作步骤——需要交联、染色质片段化和免疫沉淀(IP),实验周期约为一周

● 高测序深度——通常需要每个库2,000 – 4,000万个读段才能在背景上获得足够的信号

● 数据结果不精准 ——背景高,实验重复性差和有非特异性的peak

 

尽管存在以上短板,ChIP-seq仍然是几十年来应用最广泛的DNA-蛋白互作技术。然而,新方法、新技术往往给科学研究带来天翻地覆的变化,CUTANA™ CUT&RUN和CUT&Tag的出现解决了ChIP-Seq实验需要大量细胞,且重复性差、低信号、高背景等缺点,为研究DNA-蛋白质相互作用提供了新的有效工具。

从ChIP-seq到CUT&RUN和CUT&Taq,哪种染色质分析法更适用您的实验? 

Figure 1: ChIP-seq与CUT&RUN和CUT&Tag的比较

 

与ChIP-seq相比,CUT&Tag和CUT&RUN具有许多优点。这两种检测方法都不需要交联、染色质片段化或免疫沉淀,即可提供低背景、高可靠性的实验结果。同时CUT&RUN和CUT&Tag的实验周期更短,所需样本细胞更少,测序深度更低。

 

常见问题 

科学方法在不断发展,在表观基因组学领域尤其如此,在过去的十年中,表观基因组学经历了快速的技术增长和扩张。尽管CUTANA™检测具有明显的优势,但许多研究人员对从ChIP-seq转换到CUTANA™仍很犹豫。在这里,我们罗列出可能会在ChIP-seq过渡到CUTANA™ CUT&RUN分析时常见的一些问题。

Q:我正在研究一种瞬态相互作用蛋白质,需要通过交联来稳定染色质上的目标定位。我最好的选择不是ChIP-seq吗?

A: CUT&RUN可以生成背景干净的实验数据,免受高度交联相关的可变IP效率的干扰。如果需要,CUTANA检测可与轻到中度交联条件兼容(Fig. 2)。然而,ChIP-seq所需的高度固定方式不能应用于CUT&RUN(或CUT&Tag)。 

从ChIP-seq到CUT&RUN和CUT&Taq,哪种染色质分析法更适用您的实验? 

Figure 2: CUT&RUN在样品处理过程中保留了全基因组富集。热图中使用新鲜、冷冻或交联的K562细胞和新鲜细胞核,显示转录起始位点(TSS)的CUT&RUN H3K4me3信号,红色表示H3K4me3高富集。

 

Q:我正试图将我的结果与已有的ChIP-seq数据进行比较——我需要继续做ChIP-seq吗?

A:虽然ChIP-seq和CUT&RUN是不同的操作步骤,但原始测序数据是相似的,并且使用相同的工具进行处理和可视化。在已有的文献中多次发表过这两种方法的数据比对。主要的区别是CUT&RUN数据的背景要低得多,所需的细胞和测序读段也比ChIP-seq少了10倍。

 

Q:我已经有了一个很好的ChIP-seq操作方案或有效的抗体,是否应该坚持用下去?

A:与CUT&RUN相比,即使是优化后的ChIP-seq,也需要更多的时间、细胞和测序深度。此外,ChIP-seq本身存在低通量、高背景和成本较高的问题,CUTANA™ CUT&RUN完美的解决了这些问题。与ChIP-seq需要交联、片段化和IP等条件相比,CUT&RUN对大多数目标蛋白和细胞类型的优化需求更低。

 

Q:由于抗体在ChIP中效果很好,不想换掉ChIP-seq。

A:抗体性能并不是选择ChIP-seq的一个很好的理由。ChIP级别抗体并不可靠,尤其是组蛋白PTMs。EpiCypher发现超过70%的组蛋白赖氨酸甲基化和酰基化PTMs抗体显示明显的交叉反应性和目标蛋白结合效率低的问题。这包括有较高引用率的H3K4me3、H3K9me3、H3K27ac和H3K27me3抗体。非组蛋白PTM靶标,如转录因子,也面临着类似的挑战。


关键点2:CUT&RUN——“万能”染色质分析工具

CUT&RUN是大多数表观基因组实验的理想工具。它为细胞样本、目标蛋白兼容性和测序成本之间提供了很好的平衡。该技术操作非常简单,可根据具体实验情况进行优化调整,且随着EpiCypher开发的CUTANA™ CUT&RUN试剂盒的出现而变得更加容易。


与ChIP-seq相比,CUT&RUN的优点如下:

● 针对不同目标蛋白的高分辨率数据:CUT&RUN与组蛋白PTMs和染色质相关蛋白(包括转录因子、 表观遗传学的识别、记录和消除蛋白)兼容,(图3)。 CUT&RUN还可生成很难使用ChIP-seq进行分析的染色质重塑酶图谱,这也突出了CUT&RUN的另一个关键优势。

从ChIP-seq到CUT&RUN和CUT&Taq,哪种染色质分析法更适用您的实验? 

Figure 3: CUTANA™ CUT&RUN分析每次反应仅使用300 – 800万测序读段,为不同的目标蛋白生成高分辨率数据。*每个实验都使用CUTANA™CUT&RUN试剂盒和500,000个K562细胞进行。

 

● 需要的细胞数量较少:虽然建议使用500,000个以上的细胞,但CUTANA™ CUT&RUN在不改变操作步骤的前提下,可将细胞数量降低至5,000个,从而能够分析不常见的细胞和较珍贵的样本。目前,CUT&RUN已被用于分析小鼠和人类原代细胞、患者来源的异种移植(PDX)、流式细胞仪分选细胞、免疫细胞等。

● 操作步骤简单:CUTANA™ CUT&RUN在3天内即可完成从细胞到文库的建立。还适用于多道移液器和8联排管,提高了分析的重复性和通量。

● 测序成本降低:只需要300 – 800万个测序读段,高通量测序可以检测更多样本。

● 减少实验中需要优化的步骤:如上所述,CUT&RUN跳过了ChIP-seq中最具挑战性的部分(染色质片段化等),只需要较少的优化步骤。EpiCypher的CUTANA™CUT&RUN Kit和CUT&RUN Library Prep Kit使这一过程更加简单。

注:根据EpiCypher的经验,与CUT&Tag相比,CUT&RUN更容易学习和排除故障,特别是在使用EpiCypher的CUT&RUN检测试剂盒和Library Prep试剂盒时。

关键点3:CUT&Tag——“专业级别”染色质分析工具

 

CUT&Tag更适合在染色质分析测定方面具有经验的研究人员。如果您是:

● 刚刚开始接触表观基因组分析测定

● 经常使用ChIP-seq,打算开始尝试CUTANA染色质分析

● 打算尝试一个新的目标蛋白或使用一个新的细胞类型

● 低丰度目标蛋白,如转录因子和其他染色质相关蛋白

在这些情况中,EpiCypher建议使用CUT&RUN,它有一个简单明了的操作步骤,并可为大多数目标蛋白和细胞类型生成可靠精准的实验结果。


CUT&Tag比CUT&RUN更具挑战性

许多研究人员想要用CUTANA CUT&Tag进行染色质分析实验,因为该方法跳过了传统的文库准备步骤,只需要10万个细胞核即可获得高质量的测序结果。EpiCypher通过的Direct-to-PCR技术进一步简化了CUT&Tag过程,只需要一个管就可完成从细胞到PCR文库扩增。

尽管存在以上优势,根据EpiCypher的经验,CUT&Tag对相关实验操作熟悉度有较高的要求。样品准备不充分或细胞核太少,ConA bead丢失和抗体特异性或效率较低都会影响CUT&Tag的实验结果。与CUT&RUN相比,CUT&Tag也会容易出现更高的duplication rates,并可能在开放染色质区域出现背景信号。基于这些原因,我们推荐大多数用户使用CUT&RUN。


CUT&Tag并不适用于所有目标蛋白

EpiCypher推荐使用CUTANA™ CUT&Tag来研究组蛋白PTMs(图4)和选择转录因子(即CTCF)在全基因组上的结合或分布位点。不建议将CUT&Tag用于染色质相关蛋白分析,这些蛋白通常与染色质结合较弱,在高盐CUT&Tag溶液中剥离。这是该方法的一个主要缺点,也是EpiCypher继续建议大多数用户使用CUT&RUN的原因之一。

注:在ChIP中,样品被交联以稳定染色质上的蛋白质,因此允许使用高盐缓冲液。虽然CUT&Tag与轻度到中度交联兼容,但这些条件严重降低了收率。相反,EpiCypher建议在CUT&RUN中使用新鲜细胞样本。

从ChIP-seq到CUT&RUN和CUT&Taq,哪种染色质分析法更适用您的实验? 

Figure 4: CUTANA™ CUT&Tag是分析组蛋白PTMs的理想工具。

 

CUT&Tag是低样本量和特殊应用的理想选择

尽管上面列出了一些注意事项,但值得注意的是CUT&Tag是专门为少量细胞的染色质分析而设计的,是CUT&RUN的补充技术。

为什么CUTANA™ CUT&Tag是低样本量应用的理想选择?

● Tn5 tagmentation消除了传统的交联、染色质片段化、IP和文库准备步骤,减少了操作时间并最大化靶标回收率。当尝试用少量或单细胞进行分析时,精简的处理步骤是至关重要的。在CUT&Tag中,pAG-Tn5准确导向结合区域并进行DNA切割,省去了ChIP-seq中最耗时的步骤。

● EpiCypher的Direct-to-PCR CUT&Tag技术允许您在一个管中完成从细胞到PCR文库的扩增。而每次细胞/DNA被洗涤,转移到新的试管中,或在进行纯化时,都会面临丢失样本的风险。Direct-to-PCR CUT&Tag只需要一个DNA纯化步骤,可以在短短两天内完成。

● CUTANA CUT&Tag操作中首选100,000个核,但对于一些选定的目标,可低至1,000个核(图5)。由于CUTANA CUT&RUN分析验证过的最少是5,000个细胞,因此CUT&Tag为研究人员突破表观基因组学的检测界限提供了解决方法。

 

Figure 5: CUT&Tag仅使用1000个细胞即可生成低丰度(H3K4me3)和高丰度(H3K27me3)组蛋白PTMs的高质量图谱。

 

选择适合您的染色质分析测定方法 

下面是一个快速检查表,可以帮助您为您的项目选择最佳的检测方法:

(一)推荐使用CUT&RUN作为首选的染色质分析检测方法,适用于多种目标蛋白、细胞类型和细胞处理条件。如果每次反应可以有5,000到500,000个细胞,并且满足以下条件,CUT&RUN为最优选择:

1.刚开始接触染色质分析或CUTANA™技术

2.新的目标蛋白或使用新的细胞类型

(二)CUT&Tag是创新型应用于极少量细胞样本的分析方法。适合于有经验的研究人员。

1.CUT&Tag适用于组蛋白PTMs分析

2.CUT&Tag实验条件通常需要比CUT&RUN更多的摸索及优化

3.CUT&Tag每次反应需要1,000至100,000个细胞

 

References

1. Preissl S et al. Characterizing cis-regulatory elements using single-cell epigenomics. Nat Rev Genet (2022). PubMed PMID: 35840754.

2. Mehrmohamadi M et al. A Comparative Overview of Epigenomic Profiling Methods. Front Cell Dev Biol 9, 714687 (2021). PubMed PMID: 34368164.

3. Carter B et al. The epigenetic basis of cellular heterogeneity. Nat Rev Genet 22, 235-50 (2021 PubMed PMID: 33244170.

4. Agbleke AA et al. Advances in Chromatin and Chromosome Research: Perspectives from Multiple Fields. Mol Cell 79, 881-901 (2020). PubMed PMID: 32768408.

5. Kaya-Okur HS et al. Efficient low-cost chromatin profiling with CUT&Tag. Nat Protoc 15, 3264-83 (2020). PubMed PMID: 32913232.

6. Kaya-Okur HS et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 10, 1930 (2019). PubMed PMID: 31036827.

7. Skene PJ et al. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat Protoc 13, 1006-19 (2018). PubMed PMID: 29651053 .

8. Skene PJ et al. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife 6, (2017). PubMed PMID: 28079019 .

9. Shah RN et al. Examining the Roles of H3K4 Methylation States with Systematically Characterized Antibodies. Mol Cell 72, 162-77 e7 (2018). PubMed PMID: 30244833.

10. Liu T. Use model-based Analysis of ChIP-Seq (MACS) to analyze short reads generated by sequencing protein-DNA interactions in embryonic stem cells. Methods Mol Biol 1150, 81-95 (2014). PubMed PMID: 24743991.

11. Zang C et al. A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25, 1952-8 (2009). PubMed PMID: 19505939.

12. Evans MK et al. Ybx1 fine-tunes PRC2 activities to control embryonic brain development. Nat Commun 11, 4060 (2020). PubMed PMID: 32792512.

13. Laczik M et al. Iterative Fragmentation Improves the Detection of ChIP-seq Peaks for Inactive Histone Marks. Bioinform Biol Insights 10, 209-24 (2016). PubMed PMID: 27812282.

14. Meers MP et al. Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling. Epigenetics Chromatin 12, 42 (2019). PubMed PMID: 31300027.

15. Yu F et al. CUT&RUNTools 2.0: A pipeline for single-cell and bulk-level CUT&RUN and CUT&Tag data analysis. Bioinformatics (2021). PubMed PMID: 34244724.

16. Liu N et al. Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell 173, 430-42 e17 (2018). PubMed PMID: 29606353.

17. de Bock CE et al. HOXA9 Cooperates with Activated JAK/STAT Signaling to Drive Leukemia Development. Cancer Discov 8, 616-31 (2018). PubMed PMID: 29496663.

18. Janssens DH et al. Automated in situ chromatin profiling efficiently resolves cell types and gene regulatory programs. Epigenetics Chromatin 11, 74 (2018). PubMed PMID: 30577869.

19. Uyehara CM et al. Direct and widespread role for the nuclear receptor EcR in mediating the response to ecdysone in Drosophila. Proc Natl Acad Sci U S A 116, 9893-902 (2019). PubMed PMID: 31019084.

20. Zhang XL et al. Reorganization of postmitotic neuronal chromatin accessibility for maturation of serotonergic identity. Elife 11, (2022). PubMed PMID: 35471146.

21. Wang J et al. EZH2 noncanonically binds cMyc and p300 through a cryptic transactivation domain to mediate gene activation and promote oncogenesis. Nat Cell Biol 24, 384-99 (2022). PubMed PMID: 35210568.

22. Hainer SJ et al. Profiling of Pluripotency Factors in Single Cells and Early Embryos. Cell 177, 1319-29 e11 (2019). PubMed PMID: 30955888.

23. Mathsyaraja H et al. Max deletion destabilizes MYC protein and abrogates Emicro-Myc lymphomagenesis. Genes Dev 33, 1252-64 (2019). PubMed PMID: 31395740.

24. Roth TL et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405-9 (2018). PubMed PMID: 29995861.

25. Collins PL et al. DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner. Nat Commun 11, 3158 (2020). PubMed PMID: 32572033.

26. Yusufova N et al. Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature 589, 299-305 (2021). PubMed PMID: 33299181.

27. Janssens DH et al. Automated CUT&Tag profiling of chromatin heterogeneity in mixed-lineage leukemia. Nat Genet 53, 1586-96 (2021). PubMed PMID: 34663924.

28. Henikoff S et al. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation. Elife 9, (2020). PubMed PMID: 33191916.

29. Deng Y et al. Spatial-CUT&Tag: Spatially resolved chromatin modification profiling at the cellular level. Science 375, 681-6 (2022). PubMed PMID: 35143307.

30. Gopalan S et al. Simultaneous profiling of multiple chromatin proteins in the same cells. Mol Cell 81, 4736-46 e5 (2021). PubMed PMID: 34637755.

31. Xiong H et al. Single-cell joint detection of chromatin occupancy and transcriptome enables higher-dimensional epigenomic reconstructions. Nat Methods 18, 652-60 (2021). PubMed PMID: 33958790 .

32. Zhu C et al. Joint profiling of histone modifications and transcriptome in single cells from mouse brain. Nat Methods 18, 283-92 (2021). PubMed PMID: 33589836.

33. Janssens DH et al. CUT&Tag2for1: a modified method for simultaneous profiling of the accessible and silenced regulome in single cells. Genome Biol 23, 81 (2022). PubMed PMID: 35300717.

34. Wu SJ et al. Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nat Biotechnol (2021). PubMed PMID: 33846646.

35. Bartosovic M et al. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat Biotechnol (2021). PubMed PMID: 33846645.

 

 

如需了解更多详细信息或相关产品,请联系EpiCypher中国代理商-上海金畔生物 

HSP70科研资源

HSP70科研资源

热休克蛋白 (HSPs) 最初被发现并命名,是因为该蛋白受热之后表达显著增加,此外当收到其他化学或生理应激时,该蛋白的表达也有增长。 从发现时起,它们一直被认为是分子伴侣,引导并修饰蛋白质的结构,重新折叠失活的蛋白使它恢复到原始的结构。正是由于这些相互作用和保持蛋白平衡的功能使热休克蛋白的大量存在成为必需。为了满足对热休克蛋白的大量需求,Hsp27, Hsp40, Hsp70 和 Hsp110 的基因得到了有效进化,拥有强大的转录激活功能、有效稳定的信使RNA(mRNA)以及选择性的mRNA翻译,使这些热休克蛋白可以在遇到应激条件时高效率大量地合成。Hsp27, Hsp70, Hsp90, 和 Hsp110 成为机体受应激后最主要表达的蛋白。产生应激的条件有很多种,除了热休克、金属毒性、营养不足、氧化应激之外,还有各种疾病状态,其中最引起关注的是癌症。

HSPs由属于热休克因子家族的转录因子调控 ,这使得它们可以快速地激活转录过程并在修复后及时停止转录。这些热休克因子包括 HSF1, HSF2 和HSF4。然而相当一部分的热休克蛋白是结构性表达的,也就是非诱导的。诱导型和结构型HSPs有多种功能,可以与客户蛋白形成复合物,这些复合物直接参与细胞质基质、内质网(ER)和线粒体中的蛋白质折叠, 细胞内蛋白运输、修复以及降解 (损坏的蛋白),调控正常蛋白以及重折叠错误折叠的蛋白。该类复合物包括:Hsp10 和Hsp60 复合物可帮助蛋白质折叠,含有Hsp70- 和 Hsp90-的复合物既参与一般的蛋白质折叠通路也参与主要调节蛋白相关的特殊活动。Hsp90在细胞调控中有很多的功能- 可与大量的细胞激酶、转录因子等其他分子形成复合物,从而使它成为了相当重要的药物靶点。Hsps根据他们的分子量可以被分为几种类型,见表一

表一

名称 细胞定位 功能
Hsp104 细胞质 将蛋白质从聚合物中释放
Hsp90α and ß 细胞质 阻止蛋白质聚合,稳定蛋白质,参与运输,协助各种的调控蛋白的激活
Grp94 内质网 对内质网中处理的蛋白进行质量管理
TRAP/Hsp75 线粒体 未知
Hsp70/Hsc70 细胞质 阻止蛋白质聚合,帮助蛋白质折叠
Grp78/Bip 内质网 使蛋白质进入内质网并折叠
Hsp60/Chaperonins 细胞质和线粒体 阻止蛋白质聚合, 帮助蛋白质折叠
Hsp47 内质网 协助型前胶原分子的折叠和组合,将未折叠的蛋白分子留在ER中,帮助正确折叠的分子从ER转移到高尔基体.
Hsp40/HDJ2 细胞质 作为Hsp70的伴侣蛋白帮助蛋白质折叠
Hsp32 (HO-1; small Hsps) 内质网, 细胞膜和 线粒体 催化血红蛋白降解为胆红素的第一步, 胆红素有抗氧化特性.
Hsp27/25 (small Hsps) 内质网 阻止蛋白质的聚集, 可能也参与细胞生长和分化
Alpha B crystallin (small Hsps) 细胞质 主要的眼睛晶状体蛋白. 可以抑制 癌症中TRAIL 诱导的细胞凋亡. 阻止失活蛋白的聚集, 具有保护细胞的功能. 它是结构性表达的蛋白, 尤其在人类癌症中表达水平很高, 包括神经胶质瘤, 乳腺癌, 前列腺癌以及肾细胞癌.

* 翻译改编自 Annals in Oncology, 14 1169-1176, 2003

Hsp70 (又称热休克蛋白 70 或 Hsp72) 有非常多样的功能,它是受诱导表达的一类蛋白,而Hsc70 (热休克同源蛋白70) 虽然与Hsp70有很高的同源性,却并不是受诱导表达的蛋白。Hsc70 (又称 Hsp73) 是结构性表达的。通常情况下 Hsp70 被认为是抗-凋亡的蛋白,它与细胞凋亡的内在和外在通路在多个接合处都有相互作用 ,可以通过伴侣蛋白依赖和非依赖的活动来抑制细胞死亡。Hsp70能保护细胞不受由TNF、单核细胞、氧化应激、化疗制剂、神经酰胺及辐射诱发的细胞毒性。Hsp70的过度表达还可以抑制由一氧化氮和热刺激引起的细胞凋亡触发的Bax 从细胞质到线粒体的易位。在通路的下游,Hsp70也可以通过与Apaf-1直接互动来抑制功能性自噬体复合物的形成,这可以阻止后续半胱天冬酶依赖的活动例如 激活胞浆型磷脂酶A2、改变细胞核形态;它还可保护细胞不受强制表达的caspase-3的损害。Hsp70 除了有分子伴侣活性外,还可以通过直接或间接阻止JNK磷酸化来抑制JNK参与的细胞死亡。

Hsp70 和Hsp90被发现具有携带肽链的功能,参与在一类MHC分子上交叉呈递肿瘤来源的肽。另外还有有更多其他的功能不断被发现,分枝杆菌属Hsp70与CD40 的结合被证实可以协助钙依赖的细胞信号传导,释放CC趋化因子,促发炎细胞因子以及一氧化氮,而哺乳动物Hsp70被发现可以协助受体参与的内吞作用。

Hsp70 和 Hsp90 即使是在致免疫肽链不存在的情况下也是很强的危险信号。癌细胞本身就是一个细胞外Hsp70来源,使用IFN治疗之后,可观察到Hsc70。此外,在无肽链Hsp70与抗原呈递细胞上的CD14和TLR2/4相互作用后,促发炎细胞因子被释放,该过程的起始是由NF-B易位到细胞核内引发的。细胞因子的释放触发了先天免疫系统。

Hsp70 也与CD40配体竞争结合抗原呈递细胞结合。另外,研究显示Hsp70s参与到刺激树突细胞到引流淋巴结的迁移,也参与到这些细胞的成熟过程。在与Hsp70 MHC class II接触后,他们可上调CD86, CD83, 以及CD40 。然而,HSPs作为类细胞因子蛋白的功能很大程度上是由于在制备HSPs时有脂多糖(LPS)的污染或者细菌脂蛋白的污染。很多HSPs确实可以结合脂多糖。 脂多糖水平的降低也会降低HSP70和HSP90向树突细胞迁移的刺激能力。

自然杀伤细胞(natural killer cell,NK) 是先天免疫系统重要的效应细胞。Hsp70被认为是表面CD94密度高的NK细胞的触发因子。研究者通过绘制他们的相互作用发现,免疫刺激只需要羧基末端区域 的14个肽- T-K-D-N-N-L-L-G-R-F-E-L-S-G (TKD; AA450-463) 。当与细胞因子和Hsp70或TKD肽孵育时,细胞表面的NK受体密度增加,包括CD94。后续的阻断实验表明了CD94对于癌细胞上的NK细胞和Hsp70F的相互作用的重要性。 对人肿瘤活组织检查表明Hsp70经常出现在结肠、肺、胰腺、头和颈部的细胞膜上然后由此转移。典型的或正常的组织样本被发现时Hsp70阴性的。有趣的是,细胞(来自肿瘤组织)表面的Hsp70密度还可以由于试剂(例如烷化溶血磷脂,细胞抑制剂,包括taxoides和硫酸醛基长春碱,环氧酶(COX-1/2),抑制剂,乙酰水杨酸,胰岛素增敏剂,或者使样品过高热、辐射、光力学疗法等)的加入而进一步增加。Hsp70密度的提高伴随着对NK细胞协助的细胞死亡的敏感性提高,这表明以NK细胞为基础的治疗能力可受化学试剂或方式刺激而增强。

研究表明Hsp70 的诱导表达对于中风后神经细胞的存活十分重要,HSP早先也被证明对心血管保护起重要作用。Hsp70也能提高组织移植的效率,舒缓慢性疾病,如糖尿病,带来的严重影响(例如) (研究结果来自使用Hsp70诱导剂如吡哌醇和BRX-220)。研究显示Hsp70(和Hsp40)的过表达会对其他神经疾病如亨廷顿氏舞蹈症,帕金森和阿尔茨海默氏病或神经创伤起到积极的作用。Hsp70的诱导剂有很多种,包括氯化亚锡 (提高组织移植的成功率) ,香叶基丙酮 (脑缺血时保护神经元),抗溃疡药物 生胃酮(carbenoxolone)还有最为人熟知的 – 阿司匹林, 可以加强Hsp70 的合成.

如需了解更多详细信息或相关产品,请联系Stressmarq国内代理商-上海金畔生物